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Who am [?

Introduced to fusion energy research in a high school summer
program at the Laboratory for Laser Energetics (University of Rochester)

— | became enamored with the atmosphere within the Control Room of a big,
collaborative experiment

— Construction of a fusion reactor is a grand project that could be a “giant leap”
toward a sustainable future for humans on Earth

B.S. Engineering Physics, B.A. in Music at Lehigh University
— Five year Arts-Engineering program

PhD in Nuclear Engineering — Engineering Physics (NEEP)
University of Wisconsin - Madison
— Thesis research on Pegasus, a spherical tokamak experiment

Post-doctorial appointments at US tokamaks: NSTX and DIII-D

Research Scientist and Lead Physics Operator at NSTX-U
— lam living my “Gene Krantz” dream
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Fusion experiments are approaching ignition conditions
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Fusion experiments are approaching ignition conditions

« Ignition: fusion reactions
completely sustain plasma
temperature

» Plasma temperature ~ 10 keV

— Dictated by fusion cross-section of
deuterium-tritium

» Must achieve critical pt

— Pressure = density x temperature
» Increase pressure with density
— Energy confinement time (1) is the

exponential decay time constant of
the stored energy

» Larger t = energy leaks slower
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There are many ways to make a “star in a jar”

Continuous Pulsed

Magnetic Confinement (MCF) s i e Inertial Confinement (ICF)
§ A’ \n
) o l ‘
e
S h ¥~ a!

Implode many new fuel pellets every second
Hold on to a super hot plasma for hours, days, weeks ...

Density: 1020 m-3 Density: 103" m-3 (103 x solid)
Confinement time (7): seconds Confinement time (7): 10-'9 seconds
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There are many ways to make a “star in a jar”

Continuous

Magnetic Confinement (MCF)

Magnetized target fusion
(MTF)

Day 5
Sefkow

Hold on to a super hot plasma for hours, days, weeks ...

Tokamaks

Stellarators| Day4Bader

Reversed-field pinch
Spheromaks

Field-reversed configurations

Day 4
Sutherland

Pulsed

Inertial Confinement (ICF)
s
D w9y

&y P*

Implode many new fuel pellets every second

Day 10
Ma
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Outline

* Introduction to tokamaks

» Tokamak design considerations

* Present-day tokamak research
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Flashback to Tuesday

* What if we make a magnetic N turns.
bottle that looks like a donut? )

— With only a toroidal field, the
charged particles drift outward

Torodial direction

 Solution: twist the magnetic T

field by adding a poloidal
magnetic field o
— Creates magnetic surfaces For
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Two leading schemes for making helical magnetic fields
to confine a hot plasma for seconds, minutes, days ...

1) Tokamak o

: toroidal magnetic field coi coil current i
~Extemal colls produce S SR S
oroidal t1ie

— Drive a toroidal current
through the plasma (I,)
to produce a poloidal
field

— Demonstrated largest E=
pt of all MCF concepts
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Two leading schemes for making helical magnetic fields

to confine a hot plasma for seconds, minutes, days ...

2) Stellarator

— External coils produce
twisted magnetic field

— Easier to operate for
long periods of time
since no plasma current
IS needed

— Recent innovations have
enabled the design and
construction of
optimized stellarators

Day 4 Bader
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Each magnetic surface has field lines of a given helicity

q = 2nr/i = toroidal transits / poloidal transit

“iota” Il
‘q' !t Rotational
Safety factor!! transform!!

~— \ 4 1
~-_\!
~

gy

e (7o A .

™ lines o o
(tokamaks) magnet|c 5 d
surfaces R Let’s call the whole thing off ...

Convenient to reduce 3D toroidal coordinates (¢,6,R) to
1D magnetic surface coordinates (y) when possible
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Toroidal current must be sustained in a tokamak

Induce current using a central solenoid ddys  dlpg
— Cannot sustain current indefinitely Iy x Vg = — 7t <4
— Could be used to start up the plasma current

Tokamaks have a self-driven bootstrap current
— Accounts for about 60% * 20% of the needed current

Must sustain current using external sources o
— Described in next slide

magnetic field coils

Rapid loss of plasma current leads to the rapid
loss of the plasma confinement

— This is called a disruption

— Really important to avoid in a reactor

— Stellarators do not have this issue (we think)

outer poloidal
magnetic field coils
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Radio Frequency (RF) and Neutral Beam Injection (NBI)
are the primary methods for current drive on tokamaks

. RF and NBI can heat the plasma and drive current

— Tokamak reactors need efficient current drive
— RF will be discussed tomorrow Day 5 Pinsker

* NBI: powerful beams of neutral particles
— Neutral particles can cross the magnetic fields

— Once inside the plasma, fast neutral particles may lose their electron to
become a fast ion trapped in the magnetic field

— Fast ions collide with colder ions and raise the plasma temperature
— Will also fuel the plasma, drive current and induce plasma rotation

« Other current drive methods may be possible
— Helicity injection will be discussed later today Day 4 Sutherland
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NBI systems can be as big as the tokamak
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RF sources can be far away from the tokamak and
connected to an antenna using wave guides

T
:];L —

6 MW RF Power
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It is best to keep the hot plasma from touching
the wall of the container

 Plasmas are created in a vacuum vessel
— Vessel is pumped down to ultra-high vacuum ﬁ!

« Anything in the plasma that is not deuterium “&%
or tritium is an impurity et i ikl

— Impurities dilute the fuel and can bleed away
energy from the plasma via radiation

* The plasma facing components (PFCs) are
a source of impurities into the plasma

— Best to "levitate” the plasma inside the vessel to
avoid direct contact
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External poloidal magnetic fields shape the plasma

 Plasma wants to expand like a tire tube due to
pressure and toroidal current , R
— Use external poloidal magnetic fields to maintain a S5pantix
stable (i.e. equilibrium) position inside the vessel W ®
g Geometrical / Magnetic i
current current current current ‘_“ { 7
o 4 E Magnetic ,
T ¢ 'E surface (/ » A
: Repulsi O
Attractive ) epulsive | | N AN '
Lorentz Lorentz o \ Y2/
Force Force
2a
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External poloidal magnetic fields shape the plasma

« Plasma wants to expand like a tire tube due to

pressure and toroidal current R
— Use external poloidal magnetic fields to maintain a S5pantix
stable (i.e. equilibrium) position inside the vessel /! ®

Magnetic |

Geometrical |/ |
I\ axis

axis

* Coils with current in the same direction as |,
will create magnetic X-points
— Produces a scrape-off layer (SOL) with open field
lines that intersect divertor plates
— Last magnetic surface with closed field lines is called

the separatrix Ni"‘ \\=
separatrix | | N\

Magnetic
surface

4entral axis

* Itis good to socially distance where most \ °
impurities are created (divertor plates) and the
edge of the confined plasma (separatrix) e
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NSTX-U: National Spherical Torus Experiment

Plasma A o .

: Inner TF legs (R . . :
facing Solenoid g BN, Toroidal field coils
components olenol € :

Poloidal
field coils
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Real-time feedback is used to maintain the
plasma position inside the vessel

* Movie of plasma discharge on the MAST experiment:
https://www.youtube.com/watch?v=Yu9CS5TEhAdQ

Example of real-time (sub-millisecond) control scheme

Measure magnetic Calculate equilibrium Compare to Adiust voltage
field around vessel —» magnetic surfaces of pare ! > Ju 9
: : target position applied to coils
and current in coils the plasma
Error Actuator
Observer Model

One of the many cool things about working in this field:

Scientists and engineers come from all sorts of backgrounds to contribute to the
realization of fusion energy. Real-time control of non-linear, multi-scale systems is a
research field in and of itself and fusion energy is just one application.
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Outline

* Introduction to tokamaks

» Tokamak design considerations

* Present-day tokamak research
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There Is a limit to Ip In a tokamak

. Energy confinement (z) improves
with larger I,

—As |, increases, the magnetic field lines
make fewer toroidal transits for each
poloidal transit o B o2

—Lower g 9« = 0w Tp R

* If q Is too small, the magnetic field
can kink

—Thus q is the “safety factor”
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There is a limit to the achievable plasma pressure for all
magnetic confinement schemes

* An (imperfect) analogy: restoring force of the _ Gravtaona Rayiigh Tayor
magnetic field is gravity in the familiar Rayleigh- |
Taylor instability
— Plasma can balloon and degrade confinement (7)

* Pressure limits are expressed in terms of a
normalized pressure called beta:

6 plasma pressure
magnetic pressure

,8 L 2u0<p>
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Insulating the hot core from the “cold” wall
Impacts the size of the reactor

» Core temperature dictated by
ideal temp for D-T fusion

Core (170,000,000°C)
* Physical distance between
core and separatrix related to

Closed magnetic

surfaces the achievable temperature
gradient (VT)
Open — Larger VT - more compact
magnetlc

~N
g& surfaces
O
N

Scrape-off layer (SOL)  ° Energ_y confinement tim_e (7)
(1,000,000°C) describes how energy diffuses

Aplnt (leaks) across the gradient

Strike points

Divertor plates Private plasma — Larger t = slower leak
(< 500°C) e
Cowley
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Plasma turbulence is typically what leaks the most
energy from the core

Day 2
Mordijick

Calculations enabled by recent advances in supercomputing DIlI-D
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Energy also leaks from the plasma by radiation and
conduction (collisions)

 Just like the sun, laboratory plasmas
emit radiation across the e
electromagnetic spectrum Reinke

— Really useful for diagnosing the plasma

* In toroidal systems, collisions between
particles on banana orbits set the
energy diffusion step size

— Mathematics describing diffusion in a
toroidal system is called neo-classical theory

— Existence of banana orbits leads to the
bootstrap current Day 2 Fox

-+

|||||||||||
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Present magnet technology and tokamak physics
understanding leads to big fusion reactors

* ITER designed to produce a
DT plasma with fusion energy
ten times greater than the
heating energy

— Majority of plasma heating comes
from fusion reactions

— Will not put energy on the grid

* It is a grand engineering and
science challenge

— EU, Japan, US, China, Russia,
South Korea and India all

contributing Day 4
Laggner
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Outline

* Introduction to tokamaks

» Tokamak design considerations

* Present-day tokamak research
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After ITER, what comes next?

* One option is to take technology proven on ITER to build
the first demonstration fusion reactor (pilot plant)
— Building an “ITER-like” pilot plant will require a lot of capital o

— Studies suggest this design choice can be economically Umstattd
competitive in markets with a cap placed on carbon emissions

« World-wide magnetic confinement fusion research is
focused on two main goals:
— Make the first study of burning plasmas in ITER a success

— Develop innovations that reduce the capital needed to construct a
pilot plant and make it attractive for the energy sector
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US tokamak research community is pursuing
compact fusion reactors

1

PPPL 4.0-m

* CO m pa Ct to ka m a k K-DEMO 6.8-m device
concepts could reduce P~ 200000 TR

the capital cost of a fusion
energy reactor Day 7

Guttenfelder

* Requires innovations in

— Magnetic field coils | Pay5 sorbom T
— First wall materials| DayéDonovan |

. asa, Allain
— ConStrUCtlon and Day 7 Humrickhouse, o i

maintenance Garrison 7 H\IJII g
— Heating and current drive

P — P p—

Day 5 Pinsker

AT Pilot Plant

Qengr2 1, TBR > 1
<W,>1.7-2.2 MW/m?

Day 6 Kessel

— Blanket design and tritium breading 3y 6 Ke
ay lao
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Aspect ratio and elongation are free parameters
in the design of a tokamak

Aspectratio A=R/a, Elongationk=b/a
R = major radius, a = minor radius, b = vertical /2 height

5-2 A~15
k=2-3
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Inside the DIII-D tokamak: it looks like a donut

Introduction to Tokamaks, D.J. Battaglia, June 18, 2020
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Spherical tokamaks look more like a cored apple

MAST experiment
in the U.K.

Introduction to Tokamaks, D.J. Battaglia, June 18, 2020
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Compact tokamak design studies show impact
of aspect ratio on performance

» Design study fixed

B at geometric center [T]

size of cryostatand s [ (a) |
50 MW of heating 8 1 ——
power 6 1 ===
i 5 1 /‘7 Effective inboard
— Assumes hlgh- 4 & ¥ A shield thick
temperature 3 LS o 0dm
superconducting 2 1 ~osm
magnets are 14 ~om
available 0 |
1.5 2.0 2.5 3.0 3.5 4.0
o500 3
* Optimization in 400
design studies 300
depends on igg
validated models .
— Both in plasma 100 £
physics and 200 £
engineering 15 20 25 30 35 40

A Cryostat volume ~ 1/3 of ITER

J. E. Menard, et al., Nucl. Fusion 56, 106023 (2016).
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Confident projections require validated models

o Wl” prObany need tO be COandent Current Intensity: 45 kt Current Basin: North Atlantic

that a fusion reactor concept will

work before it gets an investor i

— Like hurricanes, non-linear multi-scale
plasma physics is complicated

« Build experiments to challenge and

validate models 25°N —

— Present day experiments are "wind
tunnels”

20°N —

~TVCE
~—TVCA
==TCON
~COTI
GFNI
—GFTI
=—GFDI
~—HWFI
AEMI
~=AVNI
—LBAR
-—B8AMD
~BAMM
—BAMS
CLP5
—XTRP
—OFCI

» For example, only deuterium fuel is used

— Models, design and analysis all aided
by advances in computational power

15°N —

85°W 80°W 75°W 70°W
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Is there a “sweet spot” in the aspect ratio

for compact tokamak reactors?

. Fusion power density: Py sion/Volume « 12 B#

— B is limited by the pressure limits

— B+ set by magnet engineering and shielding
constraints

 Spherical tokamaks (lower A) have larger 31
but lower By

» Characteristics of turbulence, stability and
current drive vary with By and aspect ratio

— Two US tokamaks provide bookends in aspect ratio
for developing and testing models

NSTX-U, A= 1 .8
Princeton, NJ

DIlI-D,A=3
San Diego, CA
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Tokamaks are used as a test-bed for technology
development needed for fusion reactors

» Fusion reactors require plasma facing surfaces that
are resilient to the large neutron and energy flux

— Challenge becomes more critical in a compact design

 Liquid metal walls are a solution with the ability to
self-heal, replenish and dissipate energy
(evaporation and flow)

« NSTX-U is preparing for large-scale test of liquid
lithium PFCs in a magnetic confinement device

— This is just one example of the fusion R&D being pursued
on tokamak devices that benefits all MCF schemes

Liquid metal PFC substrate

Textured
Surface

Internal
Wicking
Structure

Internal
Reservoir
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Tokamak research is conducted
collaboratively world-wide

JET: largest operating tokamak (UK/EU)
— Holds world-record for D-T fusion power
Tokamaks with superconducting coils

— EAST(China), KSTAR (Korea)

— JT60-SA (Japan) ... brand new!

Tokamaks with copper coils

— A= 3: DIlI-D (USA), ASDEX-U (Germany)

— A< 2:NSTX-U (USA), MAST-U (UK)

Private companies developing tokamaks
with HTS magnets

— A= 3: Commonwealth Fusion Systems (USA)
— A < 2: Tokamak Energy (UK) Day 8 Mumgaard

(NOt an exhaustive IISt) www.alltheworldstokamaks.com
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In summary ...

« Tokamaks create a helical magnetic field by driving a toroidal current
In the plasma
— Demonstrated the highest pt (pressure x energy confinement time) of any
magnetic confinement concept (to date)
— Useful devices for producing high temperature plasmas for sec. to minutes

= |TER will produce plasmas that last minutes
= Next frontier is demonstrating longer pulse tokamaks at high pt

« Two operating tokamaks in the US: DIII-D (San Diego) and NSTX-U

(Princeton)

— Experiments support preparations for ITER operation

— Span aspect ratio to validate science and engineering models needed to
optimize the design of a compact tokamak pilot plant

— Serve as a test-bed for R&D innovations that reduce the cost of a reactor
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Welcome to the NSTX-U control room!

20 — 40 scientists and engineers at any given Chief Operating Engineer
time Physics Operator

— Experiment is locked up for the day Session leader
— All aspects controlled and monitored remotely

One plasma discharge about every 20 minutes
(25 — 30 per day)

— Copper magnets need to cool down

— Countdown clock keeps the pace of the day

Each discharge lasts a few seconds
— Longest discharges limited by component heating
— Each discharge generates GBs of data

Operate for 15 — 20 weeks per year

— Down time spent on maintenance, upgrades, planning
and analysis
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